Monday, October 26, 2009

Volcano





A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, ash and gases to escape from below the surface. The word volcano is derived from the name of Vulcano island off Sicily which in turn, was named after Vulcan, the Roman god of fire.[1]

Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust (called "non-hotspot intraplate volcanism"), such as in the African Rift Valley, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America and the European Rhine Graben with its Eifel volcanoes.

Volcanoes can be caused by mantle plumes. These so-called hotspots, for example at Hawaii, can occur far from plate boundaries. Hotspot volcanoes are also found elsewhere in the solar system, especially on rocky planets and moons.


Plate tectonics and hotspots

Divergent plate boundaries


At the mid-oceanic ridges, two tectonic plates diverge from one another. New oceanic crust is being formed by hot molten rock slowly cooling and solidifying. The crust is very thin at mid-oceanic ridges due to the pull of the tectonic plates. The release of pressure due to the thinning of the crust leads to adiabatic expansion, and the partial melting of the mantle causing volcanism and creating new oceanic crust. Most divergent plate boundaries are at the bottom of the oceans, therefore most volcanic activity is submarine, forming new seafloor. Black smokers or deep sea vents are an example of this kind of volcanic activity. Where the mid-oceanic ridge is above sea-level, volcanic islands are formed, for example, Iceland

Convergent plate boundaries


Subduction zones are places where two plates, usually an oceanic plate and a continental plate, collide. In this case, the oceanic plate subducts, or submerges under the continental plate forming a deep ocean trench just offshore. Water released from the subducting plate lowers the melting temperature of the overlying mantle wedge, creating magma. This magma tends to be very viscous due to its high silica content, so often does not reach the surface and cools at depth. When it does reach the surface, a volcano is formed. Typical examples for this kind of volcano are Mount Etna and the volcanoes in the Pacific Ring of Fire.

Hotspots


Hotspots are not usually located on the ridges of tectonic plates, but above mantle plumes, where the convection of the Earth's mantle creates a column of hot material that rises until it reaches the crust, which tends to be thinner than in other areas of the Earth. The temperature of the plume causes the crust to melt and form pipes, which can vent magma. Because the tectonic plates move whereas the mantle plume remains in the same place, each volcano becomes dormant after a while and a new volcano is then formed as the plate shifts over the hotspot. The Hawaiian Islands are thought to be formed in such a manner, as well as the Snake River Plain, with the Yellowstone Caldera being the part of the North American plate currently above the hot spot.


Volcanic features

The most common perception of a volcano is of a conical mountain, spewing lava and poisonous gases from a crater at its summit. This describes just one of many types of volcano, and the features of volcanoes are much more complicated. The structure and behavior of volcanoes depends on a number of factors. Some volcanoes have rugged peaks formed by lava domes rather than a summit crater, whereas others present landscape features such as massive plateaus. Vents that issue volcanic material (lava, which is what magma is called once it has escaped to the surface, and ash) and gases (mainly steam and magmatic gases) can be located anywhere on the landform. Many of these vents give rise to smaller cones such as Puʻu ʻŌʻō on a flank of Hawaii's Kīlauea.
Other types of volcano include cryovolcanoes (or ice volcanoes), particularly on some moons of Jupiter, Saturn and Neptune; and mud volcanoes, which are formations often not associated with known magmatic activity. Active mud volcanoes tend to involve temperatures much lower than those of igneous volcanoes, except when a mud volcano is actually a vent of an igneous volcano.


Fissure vents

Volcanic fissure vents are flat, linear cracks through which lava emerges.

Shield volcanoes

Shield volcanoes, so named for their broad, shield-like profiles, are formed by the eruption of low-viscosity lava that can flow a great distance from a vent, but not generally explode catastrophically. Since low-viscosity magma is typically low in silica, shield volcanoes are more common in oceanic than continental settings. The Hawaiian volcanic chain is a series of shield cones, and they are common in Iceland, as well.

Lava domes

Lava domes are built by slow eruptions of highly viscous lavas. They are sometimes formed within the crater of a previous volcanic eruption (as in Mount Saint Helens), but can also form independently, as in the case of Lassen Peak. Like stratovolcanoes, they can produce violent, explosive eruptions, but their lavas generally do not flow far from the originating vent.


Cryptodomes

Cryptodomes are formed when viscous lava forces its way up and causes a bulge. The 1980 eruption of Mount St. Helens was an example. Lava was under great pressure and forced a bulge in the mountain, which was unstable and slid down the North side.

Volcanic cones (cinder cones)

Volcanic cones or cinder cones are the result from eruptions that erupt mostly small pieces of scoria and pyroclastics (both resemble cinders, hence the name of this volcano type) that build up around the vent. These can be relatively short-lived eruptions that produce a cone-shaped hill perhaps 30 to 400 meters high. Most cinder cones erupt only once. Cinder cones may form as flank vents on larger volcanoes, or occur on their own. Parícutin in Mexico and Sunset Crater in Arizona are examples of cinder cones. In New Mexico, Caja del Rio is a volcanic field of over 60 cinder cones.

Stratovolcanoes (composite volcanoes)

Stratovolcanoes or composite volcanoes are tall conical mountains composed of lava flows and other ejecta in alternate layers, the strata that give rise to the name. Stratovolcanoes are also known as composite volcanoes, created from several structures during different kinds of eruptions. Strato/composite volcanoes are made of cinders, ash and lava. Cinders and ash pile on top of each other, lava flows on top of the ash, where it cools and hardens, and then the process begins again. Classic examples include Mt. Fuji in Japan, Mayon Volcano in the Philippines, and Mount Vesuvius and Stromboli in Italy. In recorded history, explosive eruptions by stratovolcanoes have posed the greatest hazard to civilizations

Supervolcanoes

A supervolcano is a large volcano that usually has a large caldera and can potentially produce devastation on an enormous, sometimes continental, scale. Such eruptions would be able to cause severe cooling of global temperatures for many years afterwards because of the huge volumes of sulfur and ash erupted. They are the most dangerous type of volcano. Examples include Yellowstone Caldera in Yellowstone National Park and Valles Caldera in New Mexico (both western United States), Lake Taupo in New Zealand and Lake Toba in Sumatra, Indonesia. Supervolcanoes are hard to identify centuries later, given the enormous areas they cover. Large igneous provinces are also considered supervolcanoes because of the vast amount of basalt lava erupted, but are non-explosive.


Submarine volcanoes

Submarine volcanoes are common features on the ocean floor. Some are active and, in shallow water, disclose their presence by blasting steam and rocky debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them prevents the explosive release of steam and gases, although they can be detected by hydrophones and discoloration of water because of volcanic gases. Pumice rafts may also appear. Even large submarine eruptions may not disturb the ocean surface. Because of the rapid cooling effect of water as compared to air, and increased buoyancy, submarine volcanoes often form rather steep pillars over their volcanic vents as compared to above-surface volcanoes. They may become so large that they break the ocean surface as new islands. Pillow lava is a common eruptive product of submarine volcanoes. Hydrothermal vents are common near these volcanoes, and some support peculiar ecosystems based on dissolved minerals.


Subglacial volcanoes

Subglacial volcanoes develop underneath icecaps. They are made up of flat lava which flows at the top of extensive pillow lavas and palagonite. When the icecap melts, the lavas on the top collapse leaving a flat-topped mountain. Then, the pillow lavas also collapse, giving an angle of 37.5 degrees[citation needed]. These volcanoes are also called table mountains, tuyas or (uncommonly) mobergs. Very good examples of this type of volcano can be seen in Iceland, however, there are also tuyas in British Columbia. The origin of the term comes from Tuya Butte, which is one of the several tuyas in the area of the Tuya River and Tuya Range in northern British Columbia. Tuya Butte was the first such landform analyzed and so its name has entered the geological literature for this kind of volcanic formation. The Tuya Mountains Provincial Park was recently established to protect this unusual landscape, which lies north of Tuya Lake and south of the Jennings River near the boundary with the Yukon Territory.


Mud volcanoes

Mud volcanoes or mud domes are formations created by geo-excreted liquids and gases, although there are several different processes which may cause such activity. The largest structures are 10 kilometers in diameter and reach 700 meters high.



Erupted material

Lava composition

Another way of classifying volcanoes is by the composition of material erupted (lava), since this affects the shape of the volcano. Lava can be broadly classified into 4 different compositions (Cas & Wright, 1987):

* If the erupted magma contains a high percentage (>63%) of silica, the lava is called felsic.
o Felsic lavas (dacites or rhyolites) tend to be highly viscous (not very fluid) and are erupted as domes or short, stubby flows. Viscous lavas tend to form stratovolcanoes or lava domes. Lassen Peak in California is an example of a volcano formed from felsic lava and is actually a large lava dome.
o Because siliceous magmas are so viscous, they tend to trap volatiles (gases) that are present, which cause the magma to erupt catastrophically, eventually forming stratovolcanoes. Pyroclastic flows (ignimbrites) are highly hazardous products of such volcanoes, since they are composed of molten volcanic ash too heavy to go up into the atmosphere, so they hug the volcano's slopes and travel far from their vents during large eruptions. Temperatures as high as 1,200 °C are known to occur in pyroclastic flows, which will incinerate everything flammable in their path and thick layers of hot pyroclastic flow deposits can be laid down, often up to many meters thick. Alaska's Valley of Ten Thousand Smokes, formed by the eruption of Novarupta near Katmai in 1912, is an example of a thick pyroclastic flow or ignimbrite deposit. Volcanic ash that is light enough to be erupted high into the Earth's atmosphere may travel many kilometres before it falls back to ground as a tuff.
* If the erupted magma contains 52–63% silica, the lava is of intermediate composition.
o These "andesitic" volcanoes generally only occur above subduction zones (e.g. Mount Merapi in Indonesia).
o Andesitic lava is typically formed at convergent boundary margins of tectonic plates, by several processes:
+ Hydration melting of peridotite and fractional crystallization
+ Melting of subducted slab containing sediments
+ Magma mixing between felsic rhyolitic and mafic basaltic magmas in an intermediate reservoir prior to emplacement or lava flow.
* If the erupted magma contains <52% and >45% silica, the lava is called mafic (because it contains higher percentages of magnesium (Mg) and iron (Fe)) or basaltic. These lavas are usually much less viscous than rhyolitic lavas, depending on their eruption temperature; they also tend to be hotter than felsic lavas. Mafic lavas occur in a wide range of settings:
o At mid-ocean ridges, where two oceanic plates are pulling apart, basaltic lava erupts as pillows to fill the gap;
o Shield volcanoes (e.g. the Hawaiian Islands, including Mauna Loa and Kilauea), on both oceanic and continental crust;
o As continental flood basalts.
* Some erupted magmas contain <=45% silica and produce ultramafic lava. Ultramafic flows, also known as komatiites, are very rare; indeed, very few have been erupted at the Earth's surface since the Proterozoic, when the planet's heat flow was higher. They are (or were) the hottest lavas, and probably more fluid than common mafic lavas.

Lava texture

Two types of lava are named according to the surface texture: ʻAʻa (pronounced [ˈʔaʔa]) and pāhoehoe ([paːˈho.eˈho.e]), both words having Hawaiian origins. ʻAʻa is characterized by a rough, clinkery surface and is the typical texture of viscous lava flows. However, even basaltic or mafic flows can be erupted as ʻaʻa flows, particularly if the eruption rate is high and the slope is steep.

Pāhoehoe is characterized by its smooth and often ropey or wrinkly surface and is generally formed from more fluid lava flows. Usually, only mafic flows will erupt as pāhoehoe, since they often erupt at higher temperatures or have the proper chemical make-up to allow them to flow with greater fluidity.



Volcanic activity

Scientific classification of volcanoes

Philippine Institute of Volcanology and Seismology provides a scientific classification system for volcanoes.[2]

Active - Eruption in historic times - Historical record - 500 years - C14 dating - 10,000 years - Local seismic activity - Oral / folkloric history

Potentially Active - Solfataras / Fumaroles - Geologically young (possibly erupted < 10,000 years and for calderas and large systems - possibly < 25,000 years). - Young-looking geomorphology (thin soil cover/sparse vegetation; low degree of erosion and dissection; young vent featuresl; +/- vegetation cover). - Suspected seismic activity. - Documented local ground deformation - Geochemical indicators of magmatic involvement. - Geophysical proof of magma bodies. - Strong connection with subduction zones and external tectonic settings.

Inactive No record of eruption and its form is beginning to change by the agents of weathering and erosion via formation of deep and long gullies.
Popular classification of volcanoes
Active

A popular way of classifying magmatic volcanoes is by their frequency of eruption, with those that erupt regularly called active, those that have erupted in historical times but are now quiet called dormant, and those that have not erupted in historical times called extinct. However, these popular classifications—extinct in particular—are practically meaningless to scientists. They use classifications which refer to a particular volcano's formative and eruptive processes and resulting shapes, which was explained above.

There is no real consensus among volcanologists on how to define an "active" volcano. The lifespan of a volcano can vary from months to several million years, making such a distinction sometimes meaningless when compared to the lifespans of humans or even civilizations. For example, many of Earth's volcanoes have erupted dozens of times in the past few thousand years but are not currently showing signs of eruption. Given the long lifespan of such volcanoes, they are very active. By human lifespans, however, they are not.

Scientists usually consider a volcano to be erupting or likely to erupt if it is currently erupting, or showing signs of unrest such as unusual earthquake activity or significant new gas emissions. Most scientists consider a volcano active if it has erupted in holocene times. Historic times is another timeframe for active. But it is important to note that the span of recorded history differs from region to region. In China and the Mediterranean, recorded history reaches back more than 3,000 years but in the Pacific Northwest of the United States and Canada, it reaches back less than 300 years, and in Hawaii and New Zealand, only around 200 years. The Smithsonian Global Volcanism Program's definition of active is having erupted within the last 10,000 years (the 'holocene' period).
Extinct

Extinct volcanoes are those that scientists consider unlikely to erupt again, because the volcano no longer has a lava supply. Examples of extinct volcanoes are many volcanoes on the Hawaiian Islands in the U.S. (extinct because the Hawaii hotspot is centered near the Big Island), and Paricutin, which is monogenetic. Otherwise, whether a volcano is truly extinct is often difficult to determine. Since "supervolcano" calderas can have eruptive lifespans sometimes measured in millions of years, a caldera that has not produced an eruption in tens of thousands of years is likely to be considered dormant instead of extinct. For example, the Yellowstone Caldera in Yellowstone National Park is at least 2 million years old and hasn't erupted violently for approximately 640,000 years, although there has been some minor activity relatively recently, with hydrothermal eruptions less than 10,000 years ago and lava flows about 70,000 years ago. For this reason, scientists do not consider the Yellowstone Caldera extinct. In fact, because the caldera has frequent earthquakes, a very active geothermal system (i.e. the entirety of the geothermal activity found in Yellowstone National Park), and rapid rates of ground uplift, many scientists consider it to be an active volcano.
Dormant

It is difficult to distinguish an extinct volcano from a dormant one. Volcanoes are often considered to be extinct if there are no written records of its activity. Nevertheless volcanoes may remain dormant for a long period of time, and it is not uncommon for a so-called "extinct" volcano to erupt again. Vesuvius was thought to be extinct before its famous eruption of AD 79, which destroyed the towns of Herculaneum and Pompeii. More recently, the long-dormant Soufrière Hills volcano on the island of Montserrat was thought to be extinct before activity resumed in 1995. Another recent example is Fourpeaked Mountain in Alaska, which, prior to its eruption in September 2006, had not erupted since before 8000 BC and was long thought to be extinct.



Notable volcanoes

The 16 current Decade Volcanoes are:

* Avachinsky-Koryaksky, Kamchatka, Russia
* Nevado de Colima, Jalisco and Colima, Mexico
* Mount Etna, Sicily, Italy
* Galeras, Nariño, Colombia
* Mauna Loa, Hawaii, USA
* Mount Merapi, Central Java, Indonesia
* Mount Nyiragongo, Democratic Republic of the Congo
* Mount Rainier, Washington, USA



* Sakurajima, Kagoshima Prefecture, Japan
* Santamaria/Santiaguito, Guatemala
* Santorini, Cyclades, Greece
* Taal Volcano, Luzon, Philippines
* Teide, Canary Islands, Spain
* Ulawun, New Britain, Papua New Guinea
* Mount Unzen, Nagasaki Prefecture, Japan
* Vesuvius, Naples, Italy

Effects of volcanoes

There are many different types of volcanic eruptions and associated activity: phreatic eruptions (steam-generated eruptions), explosive eruption of high-silica lava (e.g., rhyolite), effusive eruption of low-silica lava (e.g., basalt), pyroclastic flows, lahars (debris flow) and carbon dioxide emission. All of these activities can pose a hazard to humans. Earthquakes, hot springs, fumaroles, mud pots and geysers often accompany volcanic activity.

The concentrations of different volcanic gases can vary considerably from one volcano to the next. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other principal volcanic gases include hydrogen sulfide, hydrogen chloride, and hydrogen fluoride. A large number of minor and trace gases are also found in volcanic emissions, for example hydrogen, carbon monoxide, halocarbons, organic compounds, and volatile metal chlorides.

Large, explosive volcanic eruptions inject water vapor (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), hydrogen chloride (HCl), hydrogen fluoride (HF) and ash (pulverized rock and pumice) into the stratosphere to heights of 16–32 kilometres (10–20 mi) above the Earth's surface. The most significant impacts from these injections come from the conversion of sulfur dioxide to sulfuric acid (H2SO4), which condenses rapidly in the stratosphere to form fine sulfate aerosols. The aerosols increase the Earth's albedo—its reflection of radiation from the Sun back into space - and thus cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. Several eruptions during the past century have caused a decline in the average temperature at the Earth's surface of up to half a degree (Fahrenheit scale) for periods of one to three years — sulfur dioxide from the eruption of Huaynaputina probably caused the Russian famine of 1601 - 1603. The sulfate aerosols also promote complex chemical reactions on their surfaces that alter chlorine and nitrogen chemical species in the stratosphere. This effect, together with increased stratospheric chlorine levels from chlorofluorocarbon pollution, generates chlorine monoxide (ClO), which destroys ozone (O3). As the aerosols grow and coagulate, they settle down into the upper troposphere where they serve as nuclei for cirrus clouds and further modify the Earth's radiation balance. Most of the hydrogen chloride (HCl) and hydrogen fluoride (HF) are dissolved in water droplets in the eruption cloud and quickly fall to the ground as acid rain. The injected ash also falls rapidly from the stratosphere; most of it is removed within several days to a few weeks. Finally, explosive volcanic eruptions release the greenhouse gas carbon dioxide and thus provide a deep source of carbon for biogeochemical cycles.
Gas emissions from volcanoes are a natural contributor to acid rain. Volcanic activity releases about 130 to 230 teragrams (145 million to 255 million short tons) of carbon dioxide each year.[3] Volcanic eruptions may inject aerosols into the Earth's atmosphere. Large injections may cause visual effects such as unusually colorful sunsets and affect global climate mainly by cooling it. Volcanic eruptions also provide the benefit of adding nutrients to soil through the weathering process of volcanic rocks. These fertile soils assist the growth of plants and various crops. Volcanic eruptions can also create new islands, as the magma cools and solidifies upon contact with the water.



Volcanoes on other planetary bodies

The Earth's Moon has no large volcanoes and no current volcanic activity, although recent evidence suggests it may still possess a partially molten core.[4] However, the Moon does have many volcanic features such as maria (the darker patches seen on the moon), rilles and domes.

The planet Venus has a surface that is 90% basalt, indicating that volcanism played a major role in shaping its surface. The planet may have had a major global resurfacing event about 500 million years ago,[5] from what scientists can tell from the density of impact craters on the surface. Lava flows are widespread and forms of volcanism not present on Earth occur as well. Changes in the planet's atmosphere and observations of lightning, have been attributed to ongoing volcanic eruptions, although there is no confirmation of whether or not Venus is still volcanically active. However, radar sounding by the Magellan probe revealed evidence for comparatively recent volcanic activity at Venus's highest volcano Maat Mons, in the form of ash flows near the summit and on the northern flank.

There are several extinct volcanoes on Mars, four of which are vast shield volcanoes far bigger than any on Earth. They include Arsia Mons, Ascraeus Mons, Hecates Tholus, Olympus Mons, and Pavonis Mons. These volcanoes have been extinct for many millions of years,[6] but the European Mars Express spacecraft has found evidence that volcanic activity may have occurred on Mars in the recent past as well.[6]
Jupiter's moon Io is the most volcanically active object in the solar system because of tidal interaction with Jupiter. It is covered with volcanoes that erupt sulfur, sulfur dioxide and silicate rock, and as a result, Io is constantly being resurfaced. Its lavas are the hottest known anywhere in the solar system, with temperatures exceeding 1,800 K (1,500 °C). In February 2001, the largest recorded volcanic eruptions in the solar system occurred on Io.[7] Europa, the smallest of Jupiter's Galilean moons, also appears to have an active volcanic system, except that its volcanic activity is entirely in the form of water, which freezes into ice on the frigid surface. This process is known as cryovolcanism, and is apparently most common on the moons of the outer planets of the solar system.

In 1989 the Voyager 2 spacecraft observed cryovolcanoes (ice volcanoes) on Triton, a moon of Neptune, and in 2005 the Cassini-Huygens probe photographed fountains of frozen particles erupting from Enceladus, a moon of Saturn.[8] The ejecta may be composed of water, liquid nitrogen, dust, or methane compounds. Cassini-Huygens also found evidence of a methane-spewing cryovolcano on the Saturnian moon Titan, which is believed to be a significant source of the methane found in its atmosphere.[9] It is theorized that cryovolcanism may also be present on the Kuiper Belt Object Quaoar.


Etymology

The word volcano is thought to derive from Vulcano, a volcanic island in the Aeolian Islands of Italy whose name in turn originates from Vulcan, the name of a god of fire in Roman mythology. The study of volcanoes is called volcanology, sometimes spelled vulcanology.

In culture

Past beliefs

Many ancient accounts ascribe volcanic eruptions to supernatural causes, such as the actions of gods or demigods. To the ancient Greeks, volcanoes' capricious power could only be explained as acts of the gods, while 16th/17th-century German astronomer Johannes Kepler believed they were ducts for the Earth's tears. [10] One early idea counter to this was proposed by Jesuit Athanasius Kircher (1602–1680), who witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal.

Various explanations were proposed for volcano behavior before the modern understanding of the Earth's mantle structure as a semisolid material was developed. For decades after awareness that compression and radioactive materials may be heat sources, their contributions were specifically discounted. Volcanic action was often attributed to chemical reactions and a thin layer of molten rock near the surface.

Tuesday, October 20, 2009

Earthquakes


An earthquake (also known as a tremor or temblor) is the result of a sudden release of energy in the Earth's crust that creates seismic waves. Earthquakes are recorded with a seismometer, also known as a seismograph. The moment magnitude (or the related and mostly obsolete Richter magnitude) of an earthquake is conventionally reported, with magnitude 3 or lower earthquakes being mostly imperceptible and magnitude 7 causing serious damage over large areas. Intensity of shaking is measured on the modified Mercalli scale.

At the Earth's surface, earthquakes manifest themselves by shaking and sometimes displacing the ground. When a large earthquake epicenter is located offshore, the seabed sometimes suffers sufficient displacement to cause a tsunami. The shaking in earthquakes can also trigger landslides and occasionally volcanic activity.

In its most generic sense, the word earthquake is used to describe any seismic event — whether a natural phenomenon or an event caused by humans — that generates seismic waves. Earthquakes are caused mostly by rupture of geological faults, but also by volcanic activity, landslides, mine blasts, and nuclear experiments. An earthquake's point of initial rupture is called its focus or hypocenter. The term epicenter refers to the point at ground level directly above the hypocenter.



Naturally occurring earthquakes

Tectonic earthquakes will occur anywhere within the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. In the case of transform or convergent type plate boundaries, which form the largest fault surfaces on earth, they will move past each other smoothly and aseismically only if there are no irregularities or asperities along the boundary that increase the frictional resistance. Most boundaries do have such asperities and this leads to a form of stick-slip behaviour. Once the boundary has locked, continued relative motion between the plates leads to increasing stress and therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy. This energy is released as a combination of radiated elastic strain seismic waves, frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior


Earthquake fault types

There are three main types of fault that may cause an earthquake: normal, reverse (thrust) and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and movement on them involves a vertical component. Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other ; transform boundaries are a particular type of strike-slip fault. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip.


Earthquakes away from plate boundaries

Where plate boundaries occur within continental lithosphere, deformation is spread out a over a much larger area than the plate boundary itself. In the case of the San Andreas fault continental transform, many earthquakes occur away from the plate boundary and are related to strains developed within the broader zone of deformation caused by major irregularities in the fault trace (e.g. the “Big bend” region). The Northridge earthquake was associated with movement on a blind thrust within such a zone. Another example is the strongly oblique convergent plate boundary between the Arabian and Eurasian plates where it runs through the northwestern part of the Zagros mountains. The deformation associated with this plate boundary is partitioned into nearly pure thrust sense movements perpendicular to the boundary over a wide zone to the southwest and nearly pure strike-slip motion along the Main Recent Fault close to the actual plate boundary itself. This is demonstrated by earthquake focal mechanisms.[2]

All tectonic plates have internal stress fields caused by their interactions with neighbouring plates and sedimentary loading or unloading (e.g. deglaciation). These stresses may be sufficient to cause failure along existing fault planes, giving rise to intraplate earthquakes.[3]
Shallow-focus and deep-focus earthquakes

The majority of tectonic earthquakes originate at the ring of fire in depths not exceeding tens of kilometers. Earthquakes occurring at a depth of less than 70 km are classified as 'shallow-focus' earthquakes, while those with a focal-depth between 70 and 300 km are commonly termed 'mid-focus' or 'intermediate-depth' earthquakes. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 up to 700 kilometers).[4] These seismically active areas of subduction are known as Wadati-Benioff zones. Deep-focus earthquakes occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.[5]


Earthquakes and volcanic activity

Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, like during the Mount St. Helens eruption of 1980.[6] Earthquake swarms serve as markers for the location of the flowing magma throughout the volcanoes. In the United States, these are then recorded by seismometers and tiltimeters (a device which measures the ground slope) and used as sensors to predict imminent or upcoming eruptions.[7]


Earthquake clusters

Most earthquakes form part of a sequence, related to each other in terms of location and time.[8] Most earthquake clusters consist of small tremors which cause little to no damage, but there is a theory that earthquakes can recur in a regular pattern.[9]


Aftershocks

An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. An aftershock is in the same region of the main shock but always of a smaller magnitude. If an aftershock is larger than the main shock, the aftershock is redesignated as the main shock and the original main shock is redesignated as a foreshock. Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the main shock.[8]


Earthquake swarms

Earthquake swarms are sequences of earthquakes striking in a specific area within a short period of time. They are different from earthquakes followed by a series of aftershocks by the fact that no single earthquake in the sequence is obviously the main shock, therefore none have notable higher magnitudes than the other. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park.[10]


Earthquake storms

Sometimes a series of earthquakes occur in a sort of earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century and has been inferred for older anomalous clusters of large earthquakes in the Middle East.[11][12]


Size and frequency of occurrence

Minor earthquakes occur nearly constantly around the world in places like California and Alaska in the U.S., as well as in Guatemala. Chile, Peru, Indonesia, Iran, Pakistan, the Azores in Portugal, Turkey, New Zealand, Greece, Italy, and Japan, but earthquakes can occur almost anywhere, including New York City, London, and Australia.[13] Larger earthquakes occur less frequently, the relationship being exponential; for example, roughly ten times as many earthquakes larger than magnitude 4 occur in a particular time period than earthquakes larger than magnitude 5. In the (low seismicity) United Kingdom, for example, it has been calculated that the average recurrences are: an earthquake of 3.7 - 4.6 every year, an earthquake of 4.7 - 5.5 every 10 years, and an earthquake of 5.6 or larger every 100 years.[14] This is an example of the Gutenberg-Richter law.

The number of seismic stations has increased from about 350 in 1931 to many thousands today. As a result, many more earthquakes are reported than in the past, but this is because of the vast improvement in instrumentation, rather than an increase in the number of earthquakes. The USGS estimates that, since 1900, there have been an average of 18 major earthquakes (magnitude 7.0-7.9) and one great earthquake (magnitude 8.0 or greater) per year, and that this average has been relatively stable.[15] In recent years, the number of major earthquakes per year has decreased, although this is thought likely to be a statistical fluctuation rather than a systematic trend. More detailed statistics on the size and frequency of earthquakes is available from the USGS.[16]

Most of the world's earthquakes (90%, and 81% of the largest) take place in the 40,000-km-long, horseshoe-shaped zone called the circum-Pacific seismic belt, also known as the Pacific Ring of Fire, which for the most part bounds the Pacific Plate.[17][18] Massive earthquakes tend to occur along other plate boundaries, too, such as along the Himalayan Mountains.

With the rapid growth of mega-cities such as Mexico City, Tokyo or Tehran, in areas of high seismic risk, some seismologists are warning that a single quake may claim the lives of up to 3 million people.[19][20]


Induced seismicity

While most earthquakes are caused by movement of the Earth's tectonic plates, human activity can also produce earthquakes. Four main reasons contribute to this phenomenon: constructing large dams and buildings, drilling and injecting liquid into wells, and by coal mining and oil drilling.[21] Perhaps the best known example is the 2008 Sichuan earthquake in China's Sichuan Province in May; this tremor resulted in 69,227 fatalities and is the 19th deadliest earthquake of all time. The Zipingpu Dam is believed to have fluctuated the pressure of the fault 1,650 feet (503 m) away; this pressure probably increased the power of the earthquake and accelerated the rate of movement for the fault.[22] The greatest earthquake in Australia's history was also induced by humanity, through coal mining. The city of Newcastle was built over a large sector of coal mining areas. The earthquake was spawned from a fault which reactivated due to the millions of tonnes of rock removed in the mining process.[23]


How to measure and locate an earthquake

Earthquakes can be recorded by seismometers up to great distances, because seismic waves travel through the whole Earth's interior. The absolute magnitude of a quake is conventionally reported by numbers on the Moment magnitude scale (formerly Richter scale, magnitude 7 causing serious damage over large areas), whereas the felt magnitude is reported using the modified Mercalli scale (intensity II-XII).

Every tremor produces different types of seismic waves which travel through rock with different velocities: the longitudinal P-waves (shock- or pressure waves), the transverse S-waves (both body waves) and several surface waves (Rayleigh and Love waves). The propagation velocity of the seismic waves ranges from approx. 3 km/s up to 13 km/s, depending on the density and elasticity of the medium. In the Earths interior the shock- or P waves travel much more faster than the S waves (approx. relation 1.7 : 1). The differences in travel time from the epicentre to the observatory are a measure of the distance and can be used to image both sources of quakes and structures within the Earth. Also the depth of the hypocenter can be computed roughly.

In solid rock P-waves travel at about 6 to 7 km per second; the velocity increases within the deep mantle to ~13 km/s. The velocity of S-waves ranges from 2–3 km/s in light sediments and 4–5 km/s in the Earths crust up to 7 km/s in the deep mantle. As a consequence, the first waves of a distant earth quake arrive at an observatory via the Earths mantle.

Rule of thumb: On the average, the kilometer distance to the earthquake is the number of seconds between the P and S wave times 8 [1]. Slight deviations are caused by inhomogenities of subsurface structure. By such analyses of seismograms the Earth's core was located 1913 by Beno Gutenberg.


Effects/impacts of earthquakes

There are many effects of earthquakes including, but not limited to the following:


Shaking and ground rupture

Shaking and ground rupture are the main effects created by earthquakes, principally resulting in more or less severe damage to buildings or other rigid structures. The severity of the local effects depends on the complex combination of the earthquake magnitude, the distance from epicenter, and the local geological and geomorphological conditions, which may amplify or reduce wave propagation.[24] The ground-shaking is measured by ground acceleration.

Specific local geological, geomorphological, and geostructural features can induce high levels of shaking on the ground surface even from low-intensity earthquakes. This effect is called site or local amplification. It is principally due to the transfer of the seismic motion from hard deep soils to soft superficial soils and to effects of seismic energy focalization owing to typical geometrical setting of the deposits.

Ground rupture is a visible breaking and displacement of the Earth's surface along the trace of the fault, which may be of the order of several metres in the case of major earthquakes. Ground rupture is a major risk for large engineering structures such as dams, bridges and nuclear power stations and requires careful mapping of existing faults to identify any likely to break the ground surface within the life of the structure.[25]


Landslides and avalanches

Landslides are a major geologic hazard because they can happen at any place in the world, much like earthquakes. Severe storms, earthquakes, volcanic activity, coastal wave attack, and wildfires can all produce slope instability. Landslide danger may be possible even though emergency personnel are attempting rescue.[26]


Fires

Following an earthquake, fires can be generated by break of the electrical power or gas lines. In the event of water mains rupturing and a loss of pressure, it may also become difficult to stop the spread of a fire once it has started. For example, the deaths in the 1906 San Francisco earthquake were caused more by the fires than by the earthquake itself.[27]


Soil liquefaction

Soil liquefaction occurs when, because of the shaking, water-saturated granular material (such as sand) temporarily loses its strength and transforms from a solid to a liquid. Soil liquefaction may cause rigid structures, as buildings or bridges, to tilt or sink into the liquefied deposits. This can be a devastating effect of earthquakes. For example, in the 1964 Alaska earthquake, many buildings were sunk into the ground by soil liquefaction, eventually collapsing upon themselves.[28]


Tsunami

sunamis are long-wavelength, long-period sea waves produced by an sudden or abrupt movement of large volumes of water. In the open ocean, the distance between wave crests can surpass 100 kilometers, and the wave periods can vary from five minutes to one hour. Such tsunamis travel 600-800 kilometers per hour, depending on water depth. Large waves produced by an earthquake or a submarine landslide can overrun nearby coastal areas in a matter of minutes. Tsunamis can also travel thousands of kilometers across open ocean and wreak destruction on far shores hours after the earthquake that generated them.[29]

Ordinarily, subduction earthquakes under magnitude 7.5 on the Richter scale do not cause tsunamis, although some instances of this have been recorded. Most destructive tsunamis are caused by earthquakes of magnitude 7.5 or more.[29]


Floods

A flood is an overflow of any amount of water that reaches land.[30] Floods usually occur because of the volume of water within a body of water, such as a river or lake, exceeds the total capacity of the formation, and as a result some of the water flows or sits outside of the normal perimeter of the body. However, floods may be secondary effects of earthquakes, if dams are damaged. Earthquakes may cause landslips to dam rivers, which then collapse and cause floods.[31]

The terrain below the Sarez Lake in Tajikistan is in danger of catastrophic flood if the landslide dam formed by the earthquake, known as the Usoi Dam, were to fail during a future earthquake. Impact projections suggest the flood could affect roughly 5 million people.[32]


Human impacts

Earthquakes may result in disease, lack of basic necessities, loss of life, higher insurance premiums, general property damage, road and bridge damage, and collapse of buildings or destabilization of the base of buildings; this may lead to collapse in future earthquakes. Earthquakes can also precede volcanic eruptions, which cause further problems; for example, substantial crop damage, like in the "Year Without a Summer" (1816).[33]


Preparation

In order to determine the likelihood for future seismic activity, geologists and other scientists examine the rock of an area to determine if the rock appears to be "strained". Studying the faults of an area to study the buildup time it takes for the fault to build up stress sufficient for an earthquake also serves as an effective predicition technique.[34] Measurements of the amount of pressure which collocates on the fault line each year, time passed since the last major temblor, and the energy and power of the last earthquake are made.[34] Together the facts allow scientists to determine how much pressure it takes for the fault to generate an earthquake. Though this method is useful, it has only been implemented on California's San Andreas Fault.[34]

Today, there are ways to protect and prepare possible sites of earthquakes from severe damage, through the following processes: earthquake engineering, earthquake preparedness, household seismic safety, seismic retrofit (including special fasteners, materials, and techniques), seismic hazard, mitigation of seismic motion, and earthquake prediction.


History

Pre-Middle Ages

From the lifetime of Greek Anaxagoras to the 14th century, earthquakes were attributed to "air (vapors) in the cavities of the Earth".[35] Tales of Milet, who lived from 625-547 (BCE) was the only documented person who believed that earthquakes were caused by tension between the earth and water.[35] Other theories existed, including Greek philosopher Anaxamines of Milet's (585-526 BCE) beliefs that short incline episodes of dryness and wetness caused seismic activity. Greek philosopher Democritus (460-371BCE) blamed water in general for earthquakes.[35] Pliny the Elder called earthquakes "underground thunderstorms"

Earthquakes in culture
Mythology and religion


In Norse mythology, earthquakes were explained as the violent struggling of the god Loki. When Loki, god of mischief and strife, murdered Baldr, god of beauty and light, he was punished by being bound in a cave with a poisonous serpent placed above his head dripping venom. Loki's wife Sigyn stood by him with a bowl to catch the poison, but whenever she had to empty the bowl the poison would drip on Loki's face, forcing him to jerk his head away and thrash against his bonds, causing the earth to tremble.[36]

In Greek mythology, Poseidon was the cause and god of earthquakes. When he was in a bad mood, he would strike the ground with a trident, causing this and other calamities. He also used earthquakes to punish and inflict fear upon people as revenge.[37]

In Japanese mythology, Namazu (鯰) is a giant catfish who causes earthquakes. Namazu lives in the mud beneath the earth, and is guarded by the god Kashima who restrains the fish with a stone. When Kashima lets his guard fall, Namazu thrashes about, causing violent earthquakes.


Popular culture

In modern popular culture, the portrayal of earthquakes is shaped by the memory of great cities laid waste, such as Kobe in 1995 or San Francisco in 1906.[38] Fictional earthquakes tend to strike suddenly and without warning.[38] For this reason, stories about earthquakes generally begin with the disaster and focus on its immediate aftermath, as in Short Walk to Daylight (1972), The Ragged Edge (1968) or Aftershock: Earthquake in New York (1998).[38] A notable example is Heinrich von Kleist's classic novella, The Earthquake in Chile, which describes the destruction of Santiago in 1647. Haruki Murakami's short fiction collection, After the Quake, depicts the consequences of the Kobe earthquake of 1995.

The most popular single earthquake in fiction is the hypothetical "Big One" expected of California's San Andreas Fault someday, as depicted in the novels Richter 10 (1996) and Goodbye California (1977) among other works.[38] Jacob M. Appel's widely-anthologized short story, A Comparative Seismology, features a con artist who convinces an elderly woman that an apocalyptic earthquake is imminent.[39] In Pleasure Boating in Lituya Bay, one of the stories in Jim Shepard's Like You'd Understand, Anyway, the "Big One" leads to an even more devastating tsunami.

Galactic Center





he Galactic Center is the rotational center of the Milky Way galaxy. It is located at a distance of 7.62±0.32 kpc (~25,000±1,000 ly) from the Earth[1][2][3][4][5][6] in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius where the Milky Way appears brightest. It is believed that there is a supermassive black hole at the Galactic Center of the Milky Way


Proof of existence and location

Because of interstellar dust along the line of sight, the Galactic Center cannot be studied at visible, ultraviolet or soft X-ray wavelengths. The available information about the Galactic Center comes from observations at gamma ray, hard X-ray, infrared, sub-millimetre and radio wavelengths.

Coordinates of the Galactic Center were first found by Harlow Shapley in his 1918 study of the distribution of the globular clusters. In the Equatorial coordinate system they are: RA 17h45m40.04s, Dec -29° 00' 28.1" (J2000 epoch).


Super massive black hole

The complex astronomical radio source Sagittarius A appears to be located almost exactly at the Galactic Center, and contains an intense compact radio source, Sagittarius A*, which coincides with a supermassive black hole at the center of our Galaxy. Accretion of gas onto the black hole, probably involving a disk around it, would release energy to power the radio source, itself much larger than the black hole. The latter is too small to see with present instruments.

A study in 2008 which linked radio telescopes in Hawaii, Arizona and California (Very Long Baseline Interferometry) measured the diameter of Sagittarius A* to be 0.3 AU (44 million kilometers).[8][9]

Scientists at the Max Planck Institute for Extraterrestrial Physics in Germany using Chilean telescopes have confirmed the existence of a super massive black hole at the galactic center. This black hole is of the order 4 million solar masses.[10]


Stellar population

The central parsec around Sagittarius A* contains thousands of stars. Although most of them are old red main sequence stars, the Galactic Center is also rich in massive stars. More than 100 OB and Wolf-Rayet stars have been identified there so far. They seem to have all been formed in a single star formation event a few million years ago. The existence of these relatively young (though evolved) stars was a surprise to experts, who expected the tidal forces from the central black-hole to prevent their formation. This paradox of youth is even more remarkable for stars that are on very tight orbits around Sagittarius A*, such as S2. The scenarios invoked to explain this formation involve either star formation in a massive star cluster offset from the Galactic Center that would have migrated to its current location once formed, or star formation within a massive, compact gas accretion disk around the central black-hole. It is interesting to note that most of these 100 young, massive stars seem to be concentrated within one (according to the UCLA group) or two (according to the MPE group) disks, rather than randomly distributed within the central parsec. This observation however does not allow definite conclusions to be drawn at this point.

Star formation does not seem to be occurring currently at the Galactic center, although the Circumnuclear Disk of molecular gas that orbits the Galactic center at two parsecs seems a fairly favorable site for star formation. Work presented in 2002 by Antony Stark and Chris Martin mapping the gas density in a 400 light year region around the galactic center has revealed an accumulating ring with a mass several million times that of the Sun and near the critical density for star formation. They predict that in approximately 200 million years there will be an episode of starburst in the galactic center, with many stars forming rapidly and undergoing supernovae at a hundred times the current rate. The starburst may also be accompanied by the formation of galactic jets as matter falls into the central black hole. It is thought that the Milky Way undergoes a starburst of this sort every 500 million years.

The Sun





The Sun is the star at the center of the Solar System. The Earth and other matter (including other planets, asteroids, meteoroids, comets, and dust) orbit the Sun, which by itself accounts for about 99.86% of the Solar System's mass. [10] The mean distance of the Sun from the Earth is approximately 149.6 million kilometers (1 AU), and its light travels this distance in 8 minutes and 19 seconds. This distance varies throughout the year from a minimum of 147.1 million kilometers (0.9833 AU) on the perihelion (around 3 January), to a maximum of 152.1 million kilometers (1.017 AU) on the aphelion (around 4 July). [11] Energy from the Sun, in the form of sunlight, supports almost all life on Earth via photosynthesis, [12] and drives the Earth's climate and weather. The Sun consists of hydrogen (about 74% of its mass, or 92% of its volume), helium (about 24% of mass, 7% of volume), and trace quantities of other elements, including iron, nickel, oxygen, silicon, sulfur, magnesium, carbon, neon, calcium, and chromium. [13] The Sun has a spectral class of G2V. G2 means that it has a surface temperature of approximately 5,780 K (5,510 °C) giving it a white color, which often appears as yellow when seen from the surface of the Earth because of atmospheric scattering. It is this scattering of light at the blue end of the spectrum that gives the surrounding sky its color. [14] The Sun's spectrum contains lines of ionized and neutral metals as well as very weak hydrogen lines. The V (Roman five) in the spectral class indicates that the Sun, like most stars, is a main sequence star. This means that it generates its energy by nuclear fusion of hydrogen nuclei into helium. There are more than 100 million G2 class stars in our galaxy. Once regarded as a small and relatively insignificant star, the Sun is now presumed to be brighter than 85% of the stars in the galaxy, most of which are red dwarfs. [15] [16]

The Sun's hot corona continuously expands in space creating the solar wind, a hypersonic stream of charged particles that extends to the heliopause at roughly 100 AU. The bubble in the interstellar medium formed by the solar wind, the heliosphere, is the largest continuous structure in the Solar System.[17] [18]

The Sun is currently traveling through the Local Interstellar Cloud in the low-density Local Bubble zone of diffuse high-temperature gas, in the inner rim of the Orion Arm of the Milky Way Galaxy, between the larger Perseus and Sagittarius arms of the galaxy. Of the 50 nearest stellar systems within 17 light-years (1.6×1014 km) from the Earth, the Sun ranks 4th [19] in mass. Slightly different values for the magnitude have been published, for example 4.85[20] and 4.81.[21] The Sun orbits the center of the Milky Way galaxy at a distance of approximately 24,00026,000 light years from the galactic center, moving generally in the direction of Cygnus and completing one revolution in about 225–250 million years (one Galactic year). Its orbital speed was thought to be 220 ± 20, km/s but a new estimate gives 251 km/s. [22][23] Since our galaxy is moving with respect to the cosmic microwave background radiation (CMB) in the direction of Hydra with a speed of 550 km/s, the Sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo


Motion and location within the galaxy

The Sun lies close to the inner rim of the Milky Way Galaxy's Orion Arm, in the Local Fluff or the Gould Belt, at a hypothesized distance of 7.5–8.5 kpc (25,000–28,000 lightyears) from the Galactic Center,[25][26][27][28] contained within the Local Bubble, a space of rarefied hot gas, possibly produced by the supernova remnant, Geminga.[29] The distance between the local arm and the next arm out, the Perseus Arm, is about 6,500 light-years.[30] The Sun, and thus the Solar System, is found in what scientists call the galactic habitable zone.

The Apex of the Sun's Way, or the solar apex, is the direction that the Sun travels through space in the Milky Way. The general direction of the Sun's galactic motion is towards the star Vega near the constellation of Hercules, at an angle of roughly 60 sky degrees to the direction of the Galactic Center. If one were to observe it from Alpha Centauri, the closest star system, the Sun would appear to be in the constellation Cassiopeia.[31]

The Sun's orbit around the Galaxy is expected to be roughly elliptical with the addition of perturbations due to the galactic spiral arms and non-uniform mass distributions. In addition the Sun oscillates up and down relative to the galactic plane approximately 2.7 times per orbit. This is very similar to how a simple harmonic oscillator works with no drag force (damping) term. It has been argued that the Sun's passage through the higher density spiral arms often coincides with mass extinctions on Earth, perhaps due to increased impact events.[32] It takes the Solar System about 225–250 million years to complete one orbit of the galaxy (a galactic year),[33] so it is thought to have completed 20–25 orbits during the lifetime of the Sun. The orbital speed of the Solar System about the center of the Galaxy is approximately 251 km/s.[22] At this speed, it takes around 1,400 years for the Solar System to travel a distance of 1 light-year, or 8 days to travel 1 AU.
The Sun's motion about the centre of mass of the Solar System is complicated by perturbations from the planets. Every few hundred years this motion switches between prograde and retrograde



Characteristics


The Sun is a yellow main sequence star comprising about 99.86% of the total mass of the Solar System. It is a near-perfect sphere, with an oblateness estimated at about 9 millionths,[36] which means that its polar diameter differs from its equatorial diameter by only 10 km (6 mi). As the Sun exists in a plasmatic state and is not solid, it rotates faster at its equator than at its poles. This behavior is known as differential rotation. The period of this actual rotation is approximately 25.6 days at the equator and 33.5 days at the poles. However, due to our constantly changing vantage point from the Earth as it orbits the Sun, the apparent rotation of the star at its equator is about 28 days.[37] The centrifugal effect of this slow rotation is 18 million times weaker than the surface gravity at the Sun's equator. The tidal effect of the planets is even weaker, and does not significantly affect the shape of the Sun.[38]

The Sun is a Population I, or heavy element-rich,[note 1] star.[39] The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae.[40] This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II (heavy element-poor) stars. These elements could most plausibly have been produced by endergonic nuclear reactions during a supernova, or by transmutation via neutron absorption inside a massive second-generation star.[39]

The Sun does not have a definite boundary as rocky planets do, and in its outer parts the density of its gases drops approximately exponentially with increasing distance from its center.[41] Nevertheless, it has a well-defined interior structure, described below. The Sun's radius is measured from its center to the edge of the photosphere. This is simply the layer above which the gases are too cool or too thin to radiate a significant amount of light, and is therefore the surface most readily visible to the naked eye.[42]

The solar interior is not directly observable, and the Sun itself is opaque to electromagnetic radiation. However, just as seismology uses waves generated by earthquakes to reveal the interior structure of the Earth, the discipline of helioseismology makes use of pressure waves (infrasound) traversing the Sun's interior to measure and visualize the star's inner structure.[43] Computer modeling of the Sun is also used as a theoretical tool to investigate its deeper layers.



Core

The core of the Sun is considered to extend from the center to about 0.2 to 0.25 solar radii.[44] It has a density of up to 150 g/cm3[45][46] (150 times the density of water on Earth) and a temperature of close to 13,600,000 Kelvin (by contrast, the surface of the Sun is around 5,800 Kelvin). Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the rest of the radiative zone.[44] Through most of the Sun's life, energy is produced by nuclear fusion through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium.[47] Less than 2% of the helium generated in the Sun comes from the CNO cycle. The core is the only location in the Sun that produces an appreciable amount of heat via fusion: the rest of the star is heated by energy that is transferred outward from the core. All of the energy produced by fusion in the core must travel through many successive layers to the solar photosphere before it escapes into space as sunlight or kinetic energy of particles.[48][49]

The proton-proton chain occurs around 9.2 × 1037 times each second in the core of the Sun. Since this reaction uses four protons, it converts about 3.7 × 1038 protons (hydrogen nuclei) to helium nuclei every second (out of a total of ~8.9 × 1056 free protons in the Sun), or about 6.2 × 1011 kg per second.[49] Since fusing hydrogen into helium releases around 0.7% of the fused mass as energy,[50] the Sun releases energy at the matter–energy conversion rate of 4.26 million metric tons per second, 383 yottawatts (3.83×1026 W),[49] or 9.15 × 1010 megatons of TNT per second. Power density is about 194 µW/kg of matter,[51] though since most fusion occurs in the relatively small core the plasma power density there is about 150 times bigger.[52] For comparison, the human body produces heat at approximately the rate 1.3 W/kg, roughly 600 times greater per unit mass.[53] Assuming core density 150 times higher than average, this corresponds to a surprisingly low rate of energy production in the Sun's core—about 0.272 W/m3. This power is much less than generated by a single candle.[note 2] The use of plasma with similar parameters for energy production on Earth would be completely impractical—even a modest 1 GW fusion power plant would require about 5 billion metric tons of plasma.

The rate of nuclear fusion depends strongly on density and temperature, so the fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the fusion rate and again reverting it to its present level.[55][56]

The high-energy photons (gamma rays) released in fusion reactions are absorbed in only a few millimeters of solar plasma and then re-emitted again in random direction (and at slightly lower energy)—so it takes a long time for radiation to reach the Sun's surface. Estimates of the "photon travel time" range between 10,000 and 170,000 years.[57]

After a final trip through the convective outer layer to the transparent "surface" of the photosphere, the photons escape as visible light. Each gamma ray in the Sun's core is converted into several million visible light photons before escaping into space. Neutrinos are also released by the fusion reactions in the core, but unlike photons they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were lower than theories predicted by a factor of 3. This discrepancy was recently resolved through the discovery of the effects of neutrino oscillation: the Sun in fact emits the number of neutrinos predicted by the theory, but neutrino detectors were missing 2/3 of them because the neutrinos had changed flavor


Radiative zone

From about 0.25 to about 0.7 solar radii, solar material is hot and dense enough that thermal radiation is sufficient to transfer the intense heat of the core outward.[52] In this zone there is no thermal convection; while the material grows cooler as altitude increases (from 7,000,000 °C to about 2,000,000 °C) this temperature gradient is less than the value of adiabatic lapse rate and hence cannot drive convection.[46] Heat is transferred by radiation—ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions.[52] The density drops a hundredfold (from 20 g/cm³ to only 0.2 g/cm³) from the bottom to the top of the radiative zone.[52]

Between the radiative zone and the convection zone is a transition layer called the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear—a condition where successive horizontal layers slide past one another.[59] The fluid motions found in the convection zone above, slowly disappear from the top of this layer to its bottom, matching the calm characteristics of the radiative zone on the bottom. Presently, it is hypothesized (see Solar dynamo), that a magnetic dynamo within this layer generates the Sun's magnetic field




Convective zone

In the Sun's outer layer, from its surface down to approximately 200,000 km (or 70% of the solar radius), the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation (in other words it is opaque enough). As a result, thermal convection occurs as thermal columns carry hot material to the surface (photosphere) of the Sun. Once the material cools off at the surface, it plunges back downward to the base of the convection zone, to receive more heat from the top of the radiative zone. At the visible surface of the Sun, the temperature has dropped to 5,700° K and the density to only 0.2 g/m³ (about 1/10,000th the density of air at sea level).[46]

The thermal columns in the convection zone form an imprint on the surface of the Sun, in the form of the solar granulation and supergranulation. The turbulent convection of this outer part of the solar interior gives rise to a "small-scale" dynamo that produces magnetic north and south poles all over the surface of the Sun.[46] The Sun's thermal columns are Bénard cells and therefore tend to be hexagonal prisms



Photosphere

The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light.[61] Above the photosphere visible sunlight is free to propagate into space, and its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H− ions, which absorb visible light easily.[61] Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H− ions.[62][63] The photosphere is actually tens to hundreds of kilometers thick, being slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening.[61] Sunlight has approximately a black-body spectrum that indicates its temperature is about 6,000 K, interspersed with atomic absorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of ~1023 m−3 (this is about 1% of the particle density of Earth's atmosphere at sea level).[52]

During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elements then known on Earth. In 1868, Norman Lockyer hypothesized that these absorption lines were because of a new element which he dubbed "helium", after the Greek Sun god Helios. It was not until 25 years later that helium was isolated on Earth.[64]



Atmosphere

he parts of the Sun above the photosphere are referred to collectively as the solar atmosphere.[61] They can be viewed with telescopes operating across the electromagnetic spectrum, from radio through visible light to gamma rays, and comprise five principal zones: the temperature minimum, the chromosphere, the transition region, the corona, and the heliosphere.[61] The heliosphere, which may be considered the tenuous outer atmosphere of the Sun, extends outward past the orbit of Pluto to the heliopause, where it forms a sharp shock front boundary with the interstellar medium. The chromosphere, transition region, and corona are much hotter than the surface of the Sun.[61] The reason why has not been conclusively proven; evidence suggests that Alfvén waves may have enough energy to heat the corona.[65]

The coolest layer of the Sun is a temperature minimum region about 500 km above the photosphere, with a temperature of about 4,100 K.[61] This part of the Sun is cool enough to support simple molecules such as carbon monoxide and water, which can be detected by their absorption spectra.[66]

Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines.[61] It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total eclipses of the Sun.[52] The temperature in the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top.[61] In the upper part of chromosphere helium becomes partially ionized
Above the chromosphere there is a thin (about 200 km) transition region in which the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to one million K.[68] The temperature increase is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma.[67] The transition region does not occur at a well-defined altitude. Rather, it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, chaotic motion.[52] The transition region is not easily visible from Earth's surface, but is readily observable from space by instruments sensitive to the extreme ultraviolet portion of the spectrum.[69]

The corona is the extended outer atmosphere of the Sun, which is much larger in volume than the Sun itself. The corona continuously expands into the space forming the solar wind, which fills all Solar System.[70] The low corona, which is very near the surface of the Sun, has a particle density around 1015–1016 m−3.[67][note 3] The average temperature of the corona and solar wind is about 1–2 million kelvins, however, in the hottest regions it is 8–20 million kelvins.[68] While no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.[68][70]

The heliosphere, which is the cavity around the Sun filled with the solar wind plasma, extends from approximately 20 solar radii (0.1 AU) to the outer fringes of the Solar System. Its inner boundary is defined as the layer in which the flow of the solar wind becomes superalfvénic—that is, where the flow becomes faster than the speed of Alfvén waves.[71] Turbulence and dynamic forces outside this boundary cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere, forming the solar magnetic field into a spiral shape,[70] until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. Both of the Voyager probes have recorded higher levels of energetic particles as they approach the boundary



Magnetic field

The Sun is a magnetically active star. It supports a strong, changing magnetic field that varies year-to-year and reverses direction about every eleven years around solar maximum.[74] The Sun's magnetic field gives rise to many effects that are collectively called solar activity, including sunspots on the surface of the Sun, solar flares, and variations in solar wind that carry material through the Solar System.[75] Effects of solar activity on Earth include auroras at moderate to high latitudes, and the disruption of radio communications and electric power. Solar activity is thought to have played a large role in the formation and evolution of the Solar System. Solar activity changes the structure of Earth's outer atmosphere.[76]

All matter in the Sun is in the form of gas and plasma because of its high temperatures. This makes it possible for the Sun to rotate faster at its equator (about 25 days) than it does at higher latitudes (about 35 days near its poles). The differential rotation of the Sun's latitudes causes its magnetic field lines to become twisted together over time, causing magnetic field loops to erupt from the Sun's surface and trigger the formation of the Sun's dramatic sunspots and solar prominences (see magnetic reconnection). This twisting action gives rise to the solar dynamo and an 11-year solar cycle of magnetic activity as the Sun's magnetic field reverses itself about every 11 years.[77][78]

The solar magnetic field extends well beyond the Sun itself. The magnetized solar wind plasma carries Sun's magnetic field into the space forming what is called the interplanetary magnetic field.[70] Since the plasma can only move along the magnetic field lines, the interplanetary magnetic field is initially stretched radially away from the Sun. Because the fields above and below the solar equator have different polarities pointing towards and away from the Sun, there exists a thin current layer in the solar equatorial plane, which is called the heliospheric current sheet.[70] At the large distances the rotation of the Sun twists the magnetic field and the current sheet into the Archimedean spiral like structure called the Parker spiral.[70] The interplanetary magnetic field is much stronger than the dipole component of the solar magnetic field. The Sun's 50–400 μT (in the photosphere) magnetic dipole field reduces with the cube of the distance to about 0.1 nT at the distance of the Earth. However, according to spacecraft observations the interplanetary field at the Earth's location is about 100 times greater at around 5 nT.




Chemical composition

The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively.[80] All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The most abundant metals are oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%).[81]

The Sun inherited its chemical composition from the interstellar medium out of which it formed: the hydrogen and helium in the Sun were produced by Big Bang nucleosynthesis. The metals were produced by stellar nucleosynthesis in generations of stars which completed their stellar evolution and returned their material to the interstellar medium prior to the formation of the Sun.[82] The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System.[83] However, since the Sun formed, the helium and heavy elements have settled out of the photosphere. Therefore, the photosphere now contains slightly less helium and only 84% of the heavy elements than the protostellar Sun did; the protostellar Sun was 71.1% hydrogen, 27.4% helium, and 1.5% metals.[80]

In the inner portions of the Sun, nuclear fusion has modified the composition by converting hydrogen into helium, so the innermost portion of the Sun is now roughly 60% helium, with the metal abundance unchanged. Because the interior of the Sun is radiative, not convective (see Structure above), none of the fusion products from the core have risen to the photosphere.[84]

The solar heavy-element abundances described above are typically measured both using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and thus not affected by settling of heavy elements. The two methods generally agree well.[13]



Singly ionized iron group elements

In 1970s, much research focused on the abundances of iron group elements in the Sun.[85][86] Although significant research was done, the abundance determination of some iron group elements (e.g., cobalt and manganese) was still difficult at least as far as 1978 because of their hyperfine structures.[85]

The first largely complete set of oscillator strengths of singly ionized iron group elements were made available first in the 1960s,[87] and improved oscillator strengths were computed in 1976.[88] In 1978 the abundances of singly ionized elements of the iron group were derived.[85]


Solar and planetary mass fractionation relationship

Various authors have considered the existence of a mass fractionation relationship between the isotopic compositions of solar and planetary noble gases,[89] for example correlations between isotopic compositions of planetary and solar Ne and Xe.[90] Nevertheless, the belief that the whole Sun has the same composition as the solar atmosphere was still widespread, at least until 1983.[91]

In 1983, it was claimed that it was the fractionation in the Sun itself that caused the fractionation relationship between the isotopic compositions of planetary and solar wind implanted noble gases.[91]





Solar cycles


When observing the Sun with appropriate filtration, the most immediately visible features are usually its sunspots, which are well-defined surface areas that appear darker than their surroundings because of lower temperatures. Sunspots are regions of intense magnetic activity where convection is inhibited by strong magnetic fields, reducing energy transport from the hot interior to the surface. The magnetic field gives rise to strong heating in the corona, forming active regions that are the source of intense solar flares and coronal mass ejections. The largest sunspots can be tens of thousands of kilometers across.[92]

The number of sunspots visible on the Sun is not constant, but varies over an 11-year cycle known as the solar cycle. At a typical solar minimum, few sunspots are visible, and occasionally none at all can be seen. Those that do appear are at high solar latitudes. As the sunspot cycle progresses, the number of sunspots increases and they move closer to the equator of the Sun, a phenomenon described by Spörer's law. Sunspots usually exist as pairs with opposite magnetic polarity. The magnetic polarity of the leading sunspot alternates every solar cycle, so that it will be a north magnetic pole in one solar cycle and a south magnetic pole in the next.[93]
History of the number of observed sunspots during the last 250 years, which shows the ~11-year solar cycle

The solar cycle has a great influence on space weather, and is a significant influence on the Earth's climate since luminosity has a direct relationship with magnetic activity. Solar activity minima tend to be correlated with colder temperatures, and longer than average solar cycles tend to be correlated with hotter temperatures. In the 17th century, the solar cycle appears to have stopped entirely for several decades; very few sunspots were observed during this period. During this era, which is known as the Maunder minimum or Little Ice Age, Europe experienced very cold temperatures.[94] Earlier extended minima have been discovered through analysis of tree rings and also appear to have coincided with lower-than-average global temperatures.[95]


Possible long-term cycle

A recent theory claims that there are magnetic instabilities in the core of the Sun that cause fluctuations with periods of either 41,000 or 100,000 years. These could provide a better explanation of the ice ages than the Milankovitch cycles.[96][97]




Life cycle


The Sun was formed about 4.57 billion years ago when a hydrogen molecular cloud collapsed.[98] Solar formation is dated in two ways: the Sun's current main sequence age, determined using computer models of stellar evolution and nucleocosmochronology, is thought to be about 4.57 billion years.[99] This is in close accord with the radiometric date of the oldest Solar System material, at 4.567 billion years ago.[100][101]

The Sun is about halfway through its main-sequence evolution, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than 4 million tonnes of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation; at this rate, the Sun will have so far converted around 100 Earth-masses of matter into energy. The Sun will spend a total of approximately 10 billion years as a main sequence star.[102]

The Sun does not have enough mass to explode as a supernova. Instead, in about 5 billion years, it will enter a red giant phase, its outer layers expanding as the hydrogen fuel in the core is consumed and the core contracts and heats up. Helium fusion will begin when the core temperature reaches around 100 million kelvins and will produce carbon, entering the asymptotic giant branch phase.[39]

Earth's fate is precarious. As a red giant, the Sun will have a maximum radius beyond the Earth's current orbit, 1 AU (1.5×1011 m), 250 times the present radius of the Sun.[103] However, by the time it is an asymptotic giant branch star, the Sun will have lost roughly 30% of its present mass due to a stellar wind, so the orbits of the planets will move outward. If it were only for this, Earth would probably be spared, but new research suggests that Earth will be swallowed by the Sun owing to tidal interactions.[103] Even if Earth would escape incineration in the Sun, still all its water will be boiled away and most of its atmosphere would escape into space. In fact, even during its current life in the main sequence, the Sun is gradually becoming more luminous (about 10% every 1 billion years), and its surface temperature is slowly rising. The Sun used to be fainter in the past, which is possibly the reason why life on Earth has only existed for about 1 billion years on land. The increase in solar temperatures is such that already in about a billion years, the surface of the Earth will become too hot for liquid water to exist, ending all terrestrial life.[103][104]

Following the red giant phase, intense thermal pulsations will cause the Sun to throw off its outer layers, forming a planetary nebula. The only object that will remain after the outer layers are ejected is the extremely hot stellar core, which will slowly cool and fade as a white dwarf over many billions of years. This stellar evolution scenario is typical of low- to medium-mass stars.[105][106]



Sunlight

Sunlight is Earth's primary source of energy. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m2 (watts per square meter) at a distance of one astronomical unit (AU) from the Sun (that is, on or near Earth).[107] Sunlight on the surface of Earth is attenuated by the Earth's atmosphere so that less power arrives at the surface—closer to 1,000 W/m2 in clear conditions when the Sun is near the zenith.[108]

Solar energy can be harnessed via a variety of natural and synthetic processes—photosynthesis by plants captures the energy of sunlight and converts it to chemical form (oxygen and reduced carbon compounds), while direct heating or electrical conversion by solar cells are used by solar power equipment to generate electricity or to do other useful work. The energy stored in petroleum and other fossil fuels was originally converted from sunlight by photosynthesis in the distant past.[109]


Theoretical problems

For many years the number of solar electron neutrinos detected on Earth was one third to one half of the number predicted by the standard solar model. This anomalous result was termed the solar neutrino problem. Theories proposed to resolve the problem either tried to reduce the temperature of the Sun's interior to explain the lower neutrino flux, or posited that electron neutrinos could oscillate—that is, change into undetectable tau and muon neutrinos as they traveled between the Sun and the Earth.[110] Several neutrino observatories were built in the 1980s to measure the solar neutrino flux as accurately as possible, including the Sudbury Neutrino Observatory and Kamiokande.[111] Results from these observatories eventually led to the discovery that neutrinos have a very small rest mass and do indeed oscillate.[112][58] Moreover, in 2001 the Sudbury Neutrino Observatory was able to detect all three types of neutrinos directly, and found that the Sun's total neutrino emission rate agreed with the Standard Solar Model, although depending on the neutrino energy as few as one-third of the neutrinos seen at Earth are of the electron type.[111][113] This proportion agrees with that predicted by the Mikheyev-Smirnov-Wolfenstein effect (also known as the matter effect), which describes neutrino oscillation in matter, and it is now considered a solved problem.[111]


Coronal heating problem

The optical surface of the Sun (the photosphere) is known to have a temperature of approximately 6,000 K. Above it lies the solar corona, rising to a temperature of 1–2 million K.[68] The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.[70]

It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating.[68] The first is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone.[68] These waves travel upward and dissipate in the corona, depositing their energy in the ambient gas in the form of heat.[114] The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in the form of large solar flares and myriad similar but smaller events—nanoflares.[115]

Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona.[116] In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms.[68]



Faint young Sun problem

Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the Archean period, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on the Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that the Earth has remained at a fairly constant temperature throughout its history, and in fact that the young Earth was somewhat warmer than it is today. The consensus among scientists is that the young Earth's atmosphere contained much larger quantities of greenhouse gases (such as carbon dioxide, methane and/or ammonia) than are present today, which trapped enough heat to compensate for the lesser amount of solar energy reaching the planet.[117]


Present anomalies

The Sun is presently behaving unexpectedly in a number of ways.[118][119]

* It is in the midst of an unusual sunspot minimum, lasting far longer and with a higher percentage of spotless days than normal; since May 2008, predictions of an imminent rise in activity have been regularly made and as regularly confuted.
* It is measurably dimmer than is usual during a sunspot minimum.
* Over the last two decades, the solar wind's speed has dropped 3%, its temperature 13%, and its density 20%.
* Its magnetic field is at less than half strength compared to the minimum of 22 years ago. The entire heliosphere, which fills the Solar System, has shrunk as a result, resulting in an increase in the level of cosmic radiation striking the Earth and its atmosphere.

History of observation

Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon creates day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural phenomenon. Worship of the Sun was central to civilizations such as the Inca of South America and the Aztecs of what is now Mexico. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent megaliths are located in Nabta Playa, Egypt, Mnajdra, Malta and at Stonehenge, England); Newgrange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumn equinoxes. During the Roman era the Sun's birthday was a holiday celebrated as Sol Invictus (literally "unconquered sun") soon after the winter solstice which may have been an antecedent to Christmas. With respect to the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers considered it to be one of the seven planets (Greek planetes, "wanderer"), after which the seven days of the week are named in some languages.[120][121][122]


Development of scientific understanding

One of the first people to offer a scientific or philosophical explanation for the Sun, was the Greek philosopher Anaxagoras, who reasoned that it was a giant flaming ball of metal even larger than the Peloponnesus, and not the chariot of Helios.[123] For teaching this heresy, he was imprisoned by the authorities and sentenced to death, though he was later released through the intervention of Pericles. Eratosthenes estimated the distance between the Earth and the Sun in the 3rd century BCE as "of stadia myriads 400 and 80000", the translation of which is ambiguous, implying either 4,080,000 stadia (755,000 km) or 804,000,000 stadia (148–153 million km); the latter value is correct to within a few percent. In the 1st century CE, Ptolemy estimated the distance as 1,210 times the Earth radius.[124]

Medieval Arabic contributions include Albatenius discovering that the direction of the Sun's eccentric is changing,[125] and Ibn Yunus observing more than 10,000 entries for the Sun's position for many years using a large astrolabe.[126]

The theory that the Sun is the center around which the planets move was apparently proposed by the ancient Greek Aristarchus as well as several ancient Babylonian, ancient Indian and medieval Arabic astronomers (see Heliocentrism). This view was revived in the 16th century by Nicolaus Copernicus. In the early 17th century, the invention of the telescope permitted detailed observations of sunspots by Thomas Harriot, Galileo Galilei and other astronomers. Galileo made some of the first known Western observations of sunspots and posited that they were on the surface of the Sun rather than small objects passing between the Earth and the Sun.[127] Sunspots were also observed since the Han dynasty and Chinese astronomers maintained records of these observations for centuries.

In 1672 Giovanni Cassini and Jean Richer determined the distance to Mars and were thereby able to calculate the distance to the Sun. Isaac Newton observed the Sun's light using a prism, and showed that it was made up of light of many colors,[128] while in 1800 William Herschel discovered infrared radiation beyond the red part of the solar spectrum.[129] The 1800s saw spectroscopic studies of the Sun advance, and Joseph von Fraunhofer made the first observations of absorption lines in the spectrum, the strongest of which are still often referred to as Fraunhofer lines. When expanding the spectrum of light from the Sun, there are large number of missing colors can be found.

In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle. Lord Kelvin suggested that the Sun was a gradually cooling liquid body that was radiating an internal store of heat.[130] Kelvin and Hermann von Helmholtz then proposed the Kelvin-Helmholtz mechanism to explain the energy output. Unfortunately the resulting age estimate was only 20 million years, well short of the time span of at least 300 million years suggested by some geological discoveries of that time.[130] In 1890 Joseph Lockyer, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun.[131]

Not until 1904 was a substantiated solution offered. Ernest Rutherford suggested that the Sun's output could be maintained by an internal source of heat, and suggested radioactive decay as the source.[132] However it would be Albert Einstein who would provide the essential clue to the source of the Sun's energy output with his mass-energy equivalence relation E = mc2.[133]

In 1920, Sir Arthur Eddington proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass.[134] The preponderance of hydrogen in the Sun was confirmed in 1925 by Cecilia Payne. The theoretical concept of fusion was developed in the 1930s by the astrophysicists Subrahmanyan Chandrasekhar and Hans Bethe. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun.[135][136]

Finally, a seminal paper was published in 1957 by Margaret Burbidge, entitled "Synthesis of the Elements in Stars".[137] The paper demonstrated convincingly that most of the elements in the universe had been synthesized by nuclear reactions inside stars, some like our Sun.


Solar space missions

The first satellites designed to observe the Sun were NASA's Pioneers 5, 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of the Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long period of time, transmitting data until 1987.[139]

In the 1970s, two Helios spacecraft and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 and 2 probes was a joint U.S.–German probe that studied the solar wind from an orbit carrying the spacecraft inside Mercury's orbit at perihelion.[140] The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station.[69] Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona.[69] Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind.[140]

In 1980, the Solar Maximum Mission was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and UV radiation from solar flares during a time of high solar activity and solar luminosity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before re-entering the Earth's atmosphere in June 1989.[141]

Launched in 1991, Japan's Yohkoh (Sunbeam) satellite observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares, and also demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an annular eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric reentry in 2005.[142]

One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on 2 December 1995.[69] Originally intended to serve a two-year mission, SOHO is still in operation as of 2009. It has proven so useful that a follow-on mission, the Solar Dynamics Observatory, is planned for launch in November 2009. Situated at the Lagrangian point between the Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch.[69] In addition to its direct solar observation, SOHO has enabled the discovery of large numbers of comets, mostly very tiny sungrazing comets which incinerate as they pass the Sun.[143]

All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to "slingshot" past the planet into an orbit which would take it far above the plane of the ecliptic. Serendipitously, it was well-placed to observe the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s which was slower than expected, and that there were large magnetic waves emerging from high latitudes which scattered galactic cosmic rays.[144]

Elemental abundances in the photosphere are well known from spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, Genesis, was designed to allow astronomers to directly measure the composition of solar material. Genesis returned to Earth in 2004 but was damaged by a crash landing after its parachute failed to deploy on reentry into Earth's atmosphere. Despite severe damage, some usable samples have been recovered from the spacecraft's sample return module and are undergoing analysis.[145]

The Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind the Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.[146][147]



Observation and effects


Sunlight is very bright, and looking directly at the Sun with the naked eye for brief periods can be painful, but is not particularly hazardous for normal, non-dilated eyes.[148][149] Looking directly at the Sun causes phosphene visual artifacts and temporary partial blindness. It also delivers about 4 milliwatts of sunlight to the retina, slightly heating it and potentially causing damage in eyes that cannot respond properly to the brightness.[150][151] UV exposure gradually yellows the lens of the eye over a period of years and is thought to contribute to the formation of cataracts, but this depends on general exposure to solar UV, not on whether one looks directly at the Sun.[152] Long-duration viewing of the direct Sun with the naked eye can begin to cause UV-induced, sunburn-like lesions on the retina after about 100 seconds, particularly under conditions where the UV light from the Sun is intense and well focused;[153][154] conditions are worsened by young eyes or new lens implants (which admit more UV than aging natural eyes), Sun angles near the zenith, and observing locations at high altitude.

Viewing the Sun through light-concentrating optics such as binoculars is very hazardous without an appropriate filter that blocks UV and substantially dims the sunlight. An attenuating (ND) filter might not filter UV and so is still dangerous. Attenuating filters to view the Sun should be specifically designed for that use: some improvised filters pass UV or IR rays that can harm the eye at high brightness levels.[155] Unfiltered binoculars can deliver over 500 times as much energy to the retina as using the naked eye, killing retinal cells almost instantly (even though the power per unit area of image on the retina is the same, the heat cannot dissipate fast enough because the image is larger). Even brief glances at the midday Sun through unfiltered binoculars can cause permanent blindness.[156]

Partial solar eclipses are hazardous to view because the eye's pupil is not adapted to the unusually high visual contrast: the pupil dilates according to the total amount of light in the field of view, not by the brightest object in the field. During partial eclipses most sunlight is blocked by the Moon passing in front of the Sun, but the uncovered parts of the photosphere have the same surface brightness as during a normal day. In the overall gloom, the pupil expands from ~2 mm to ~6 mm, and each retinal cell exposed to the solar image receives about ten times more light than it would looking at the non-eclipsed Sun. This can damage or kill those cells, resulting in small permanent blind spots for the viewer.[157] The hazard is insidious for inexperienced observers and for children, because there is no perception of pain: it is not immediately obvious that one's vision is being destroyed.

During sunrise and sunset sunlight is attenuated due to Rayleigh scattering and Mie scattering from a particularly long passage through Earth's atmosphere,[158] and the Sun is sometimes faint enough to be viewed comfortably with the naked eye or safely with optics (provided there is no risk of bright sunlight suddenly appearing through a break between clouds). Hazy conditions, atmospheric dust, and high humidity contribute to this atmospheric attenuation.[159]

A rare optical phenomenon may occur shortly after sunset or before sunrise, known as a green flash. The flash is caused by light from the Sun just below the horizon being bent (usually through a temperature inversion) towards the observer. Light of shorter wavelengths (violet, blue, green) is bent more than that of longer wavelengths (yellow, orange, red) but the violet and blue light is scattered more, leaving light that is perceived as green.[160]

Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. It also causes sunburn, and has other medical effects such as the production of vitamin D. Ultraviolet light is strongly attenuated by Earth's ozone layer, so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color in different regions of the globe.[